Transverse Strains in Muscle Fascicles during Voluntary Contraction: A 2D Frequency Decomposition of B-Mode Ultrasound Images

نویسندگان

  • James M. Wakeling
  • Avleen Randhawa
چکیده

When skeletal muscle fibres shorten, they must increase in their transverse dimensions in order to maintain a constant volume. In pennate muscle, this transverse expansion results in the fibres rotating to greater pennation angle, with a consequent reduction in their contractile velocity in a process known as gearing. Understanding the nature and extent of this transverse expansion is necessary to understand the mechanisms driving the changes in internal geometry of whole muscles during contraction. Current methodologies allow the fascicle lengths, orientations, and curvatures to be quantified, but not the transverse expansion. The purpose of this study was to develop and validate techniques for quantifying transverse strain in skeletal muscle fascicles during contraction from B-mode ultrasound images. Images were acquired from the medial and lateral gastrocnemii during cyclic contractions, enhanced using multiscale vessel enhancement filtering and the spatial frequencies resolved using 2D discrete Fourier transforms. The frequency information was resolved into the fascicle orientations that were validated against manually digitized values. The transverse fascicle strains were calculated from their wavelengths within the images. These methods showed that the transverse strain increases while the longitudinal fascicle length decreases; however, the extent of these strains was smaller than expected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D curvature of muscle fascicles in triceps surae.

Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dime...

متن کامل

Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction.

Freehand three-dimensional ultrasound (3DUS) was used to investigate longitudinal and biaxial transverse deformation and rotation of the free Achilles tendon in vivo during a voluntary submaximal isometric muscle contraction. Participants (n = 8) were scanned at rest and during a 70% maximal voluntary isometric contraction (MVIC) of the plantarflexors. Ultrasound images were manually digitized ...

متن کامل

Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the...

متن کامل

Computational methods for quantifying in vivo muscle fascicle curvature from ultrasound images.

Muscle fascicles curve during contraction, and this has been seen using B-mode ultrasound. Curvature can vary along a fascicle, and amongst the fascicles within a muscle. The purpose of this study was to develop an automated method for quantifying curvature across the entirety of an imaged muscle, to test the accuracy of the method against synthetic images of known curvature and noise, and to t...

متن کامل

Changes to 3 D muscle fascicle geometry during contraction

Muscle is a three dimensional (3D) entity with varying shape across the length of the muscle and changes shape during contraction. Changes in muscle shape can influence the orientation of the fascicles within the muscle [1]. Dissection studies examining 3D muscle fascicles architecture have reported regional variations in the fascicle architecture [2]. 2D ultrasound studies have shown that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014